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LETTER TO THE EDITOR 

Thermal fluctuations of flux-line positions of high-Tc 
superconductors 

Hong-ru Ma 
Chinese Cenue tor Advanced Science and Technology (World Laboratory), PO Box 8730. 
Beijing 100080, People’s Republic of China and lnstitule of Condensed Matter Physics, 
Shanghai Jiao Tong University, Shanghai 200030, People’s Republic of Chinat 

Received 3 June 1993 

Abstract. The thermal fluctuations of flux-line posilions in an ideal high-T, oxide 
superconductor have teen studied. We have calculated the ratio J(uz)/a numerically, and 
justified lhe latest conjectured analytic expression. 

For a strong enough magnetic field, flux lines can penetrate type-II superconductors in 
the form of flux lines, each flux line carrying a flux r& = 2 x IO-’ G cm-’. At lower 
temperatures the flux lines form a regular triangular lattice. At higher temperatures the 
flux-line positions fluctuate around their equilibrium positions due to thermal disturbance. 
Thermal fluctuation can be measured by the Lmdemann ratio a = m / a  where a 
is the lattice constant. It has been found that most classical solids melt at a Y 0.1 
and that quantum solids melt at CY = 0.3. This value for the flux-line lattice was first 
calculated from local elasticity by Nelson and Seung [I] and in the extreme non-local 
limit by Moore [Z]. Houghton et al 131 and Brandt [4] calculated this quantity under the 
continuum approximation and obtained values which were much larger than Nelson and 
Seung’s result, but comparable to Moore’s. (The non-local correction is important in high- 
T, superconductors, because at a typical magnetic field of 2 T the average flux-line distance 
is much smaller than the range of interaction between flux lines. thus the non-local results 
are more relevant.) The latest formula for (U*) based on the anisotropic London theory in 
the continuum approximation is given by [6] 

(U*) = ksT( 1 /B&Gy,)”’[ ~ B K ~ / ( B , Z  - B)]’/’A,/A,b (1) 

where c66 = ( B z / 4 z ) / 8 ~ ‘ b  is the shear modulus and K is the Ginzburg-Landau parameter, 
b = B / B c ~ ,  and A, and .k& are the penetration depth in the c direction and the ah plane 
respectively. The formula is written as the local result [I], multiplied by a non-local 
correction factor [ ~ B K ’ / ( B , ~ -  B)] ’ I2 ,  and the anisotropy ratio hc/&,h. The last two factors 
were actually conjectured from physical argument by Brandt [ 5 ]  and, to my knowledge, 
have never been derived. 

We calculate here (U’) numerically from the anisotropic London theory to justify the 
validity of formula (1); the calculation takes into account both the discreteness of flux-line 
lattices (i.e. beyond the continuum approximation) and the non-locality exactly within the 
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anisotropic London theory under the harmonic approximation. Our results were compared 
with formula (1) and showed very good agreement The formula gives a result about 10% 
smaller than the exact result for a large temperature range. We propose that the formula 
should be multiplied by a factor of 1.25, and in this way it will almost coincide with the 
exact result from 0 K to about 0.6Tc(H); the maximum deviation in this range is less than 
2%, which is the upper limit of our calculation error. We now describe our results in detail. 
The interaction of flux lines of arbitrary shape was given recently by Sudboand Brandt 171 
using a method based on the anisotropic London equations: 

where 

and 

Vij(k)=[I/(I +A~kz)][6;j-qiqjA~/(l + A , k 2 + A z d ) ]  (4) 

where p = k x 5. In the following we only consider the case where BIIE. 
Previous calculation with the similar l / r  potential [PI, as well as our recent Monte 

Carlo simulation [ 9 ] ,  indicates that because of the softness of the potential, the harmonic 
approximation works well. The harmonic energy UI, can be written in terms of the deviations 
U of the flux lines from the ideal lattice positions as 

( 5 )  
1 

U0 = - @D,p(k)u,(-~)up(k) 
' k  

with 

The sum is over all reciprocal lattice vectors Q. 
Direct evaluation of the summation of Q is impractical because of its very slow 

convergence; actually, the summation is logarithmically divergent. This divergence 
originates from the replacement of the normal core part of a flux by a singular line. The 
summation has to be cut off at Qmm N I /<  where < is the coherence length that gives 
the radius of the normal core. The cutting off can be incorporated properly by using a 
convergence factor exp[-2(Q + k)2$2] [6]. We have developed a Ewald sum technique 
to calculate this sum [IO], where we transform the sum into two fast-converging series, in 
real space and reciprocal space, respectively. The elastic matrix can be easily evaluated 
numerically by taking only a few shells of real space and reciprocal space lattice vectors 
around the origin. 

Thermal fluctuation is given by the mean square (U*) of flux displacement. It can be 
written in terms of the elastic matrix 



Letter to the Ediror L523 

1000 
0 '  

0 200 400 600 800 

Figure 1. Plot of the integrand of R, as a function of k,. InSeC lhe same plot for small values 
of k,. 
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Figure 2. Calculated Lindemann mi0 (full curves) and lk same quantity from (I) (broken 
curves) for p a m e t e n  of YBCO, where H,z(O) = 22 T. K = 100, Tc = 87 K and M,/M = 25, 
the upper critical field is laken to be Hc2(T) = Hc~(0)[l - (T/T,)']. The applied magnetic 
field H (Iaken to be equal to B in our case) is in uniu o f  H,z(O). 

The above integration was evaluated in the following way. First, for a given value of k,, 
we evaluate the 2D integral of k,, ky by dividing of the 2D Brillouin zone (BZ) into 36 
triangles; in each triangle, we linearly interpolate l/O;j(k) and l/O;i(k) and integrate 
the interpolated function analytically, then sum over all triangles. (See 1111 for a detailed 
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Figure 3. As figure 2 excepf that M,/M = 360. 

discussion of this so-called simplex integration method.) The result is a function of k, at 
discrete k, mesh points; it drops quickly for small k, and tends to a small constant at large 
k, (see figure 1 for a typical plot). This implies that the integration over k, is divergent 
linearly and that (2) is infinite for all temperatures larger than zero. Of course this is not 
physical; the source of this divergence again originates from the improper treatment of the 
normal core of flux lines in the London theory. We should cut off the integration over k, 
at approximately I/.$, where fc = ( M / M , ) f  is the coherence length along the c direction, 
because the value of the integrand is very small around this cutting point (see figure I), so 
the exact cutting position is not important, and we can do this systematically by introducing 
a convergence factor exp(-2kfE:). Then the integration over k: was performed by the spline 
interpolation method. We have checked our calculation for one temperature by refining the 
mesh points in the BZ and double- and triple-k, mesh points; the estimated relative error 
of our numerical data is less than 2%. We have performed calculations with parameters 
characteristic of YBCO and BSCCO. The results are given in figures 2 and 3. We have also 
plotted in the figures the formula (1). We see that though formula ( I )  was conjectured via 
physical arguments, it is quite good and gives results comparable to within about 10% to our 
exact numerical result. By comparing the two sets of results, we suggest that the formula (1) 
should be multiplied by a factor of 1.25, which will make it almost exact in the temperature 
range of interest as pointed out earlier. Figures 4 and 5 give comparisons of formula ( I )  
multiplied by 1.25 with our exact numerical results; the agreement is excellent. We point 
out here that even though formula ( I )  was conjectured from the continuum approximation 
of the anisotropic London theory, it actually exceeds this approximation and is close to 
the exact result as our calculation indicates. To compare our result with experiment, we 
have fitted to (1) multiplied by 1.25 the measurements of flux-line lattice melting lines on 
untwinned single YBa2Cu,O7_s crystals by Kwok et a/ [ 121 and similar results by Safar et 
a1 [I31 and Fame11 el al [14], using the parameters given by [12]; the Lindemann ratio is 
fitted to 0.1 1, which is physically reliable and very close to the value for classical melting 
of solids. 
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Figure 4. Clculaled Lindemann ratio (full curves) and the game quantity from (I) multiplied 
by 1.25 (broken curves). The parameters are the same as in figure 2. The two curves are almost 
coincident from T = 0 K la T = 0.6TJH). 
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fiigure 5. As figure 4 but with the same parameters as figure 3, 

To conclude, we have calculated the thermal fluctuations of flux-line positions of high-T, 
superconductors exactly. within the anisotropic London theory, and justified the correctness 
of the analytic formula available. The Lindemann ratio at the flux-line lattice melting point 
is estimated to be 0.1 1 by fitting the experimental measurements. 
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